Catalytic Hydrogenation and Oxidation of Biomass- Derived Levulinic Acid
نویسندگان
چکیده
Levulinic acid (LA), 4-oxo-pentanoic acid, is a new platform chemical with various potential uses. In this paper, catalytic hydrogenation and oxidation of levulinic acid were studied. It was shown from experiments that levulinic acid can be hydrogenated to γ-valerolactone (GVL) over transition metal catalysts and oxidative-decarboxylated to 2-butanone (methyl-ethyl-ketone, MEK) and methyl-vinyl-ketone (MVK) by cupric oxide (CuO), cupric oxide/cerium oxide (CuO/CeO2), cupric oxide/ alumina (CuO/ Al2O3), and silver(I)/ peroxydisulfate (Ag(I)/S2O8).
منابع مشابه
Influence of Sulfuric Acid on the Performance of Ruthenium‐based Catalysts in the Liquid‐Phase Hydrogenation of Levulinic Acid to γ‐Valerolactone
The presence of biogenic or process-derived impurities poses a major problem on the efficient catalytic hydrogenation of biomass-derived levulinic acid to γ-valerolactone; hence, studies on their influence on catalyst stability are now required. Herein, the influence of sulfuric acid as feed impurity on the performance of Ru-based heterogeneous catalysts, including Ru/ZrO2 and mono- and bimetal...
متن کاملConversion of Levulinic Acid to γ-Valerolactone over Few-Layer Graphene-Supported Ruthenium Catalysts
Few-layer graphene (FLG) supported ruthenium nanoparticle catalysts were synthesized and used for the hydrogenation of levulinic acid (LA), one of the “top 10” biomass platform molecules derived from carbohydrates. FLG-supported ruthenium catalyst showed 99.7% conversion and 100% selectivity toward γ-valerolactone (GVL) at room temperature in a batch reactor under high-pressure hydrogen. This c...
متن کاملLiquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to γ-valerolactone over metal oxide catalysts.
Levulinic acid and its esters are converted to γ-valerolactone over metal oxide catalysts by catalytic transfer hydrogenation via the Meerwein-Ponndorf-Verley reaction.
متن کاملElectrochemical Coupling of Biomass‐Derived Acids: New C8 Platforms for Renewable Polymers and Fuels
Electrolysis of biomass-derived carbonyl compounds is an alternative to condensation chemistry for supplying products with chain length >C6 for biofuels and renewable materials production. Kolbe coupling of biomass-derived levulinic acid is used to obtain 2,7-octanedione, a new platform molecule only two low process-intensity steps removed from raw biomass. Hydrogenation to 2,7-octanediol provi...
متن کاملHigh performing and stable supported nano-alloys for the catalytic hydrogenation of levulinic acid to γ-valerolactone
The catalytic hydrogenation of levulinic acid, a key platform molecule in many biorefinery schemes, into γ-valerolactone is considered as one of the pivotal reactions to convert lignocellulose-based biomass into renewable fuels and chemicals. Here we report on the development of highly active, selective and stable supported metal catalysts for this reaction and on the beneficial effects of meta...
متن کامل